## **Renewable Fuels for Process Energy**

Bert Bock Eastern Region Biofuels Workshop & Trade Show Atlanta, GA October 11, 2005



## Why Renewable Process Energy for Ethanol Dry Mills?

- High and volatile natural gas prices
- Low-cost waste and byproduct feedstocks
- Lower or no thermal oxidizer costs
- Energy Bill incentives for "cellulosic biomass ethanol" (applicable to corn/ethanol when animal wastes or other wastes displace at least 90% of fossil energy normally used in production of ethanol)
  - RFS credit system provides 2.5 gallons credit/gallon ethanol produced with renewable process energy
  - Eligible for additional grants and loan guarantees
- Less fossil fuel input and lower GHG emissions



#### Natural Gas Spot Henry Hub





| Offsetting higher corn costs: Nort | h Alabama vs. | Eastern Corn Belt |
|------------------------------------|---------------|-------------------|
|                                    |               | \$/denatured gal. |
| Δ corn price, \$/bu                | 0.30          | 0.107             |
| Energy cost savings via renewable  | energy:       |                   |
| ΔNG price, \$/MBtu NG replaced     | 2.50          | 0.085             |
| $\Delta$ electricty price, \$/kWh  | 0.03          | 0.023             |
|                                    | Total         | 0.108             |



## Why Ethanol Plants as Energy Hosts? Renewable Energy Plant Perspective

- Good economies of scale for RE plants
- 24/7 operation
- Generally competing with natural gas
- Good ratio of process heat to electricity for cogeneration
- Potential for sharing resources with ethanol plant
  - Maintenance staff and resources
  - Administration-management, purchasing, personnel
  - Operator staff—shared backup for OSHA compliance
  - Scales and scales operator for weighing feedstock



## Potential Feedstocks for Process Energy: Eastern US

- Wood wastes
- Forest thinnings/residuals
- Poultry litter
- Swine solids
- Crop residues
- Bran from fractionated corn
- CDS (syrup) normally included with DDGS
- DDGS



- MSW (RDF)
- Biosolids
- Yard waste
- Scrap tires
- Carpet residuals, post consumer carpet
- Hurricane debris

## **Fuel Properties**

|                  | Moisture    | HHV    | Ν         | S    | Ash  | Alkali      |
|------------------|-------------|--------|-----------|------|------|-------------|
|                  | As-received |        | Dry basis |      |      |             |
|                  | %           | Btu/lb | %         |      |      | lb/<br>MBtu |
| Sawdust          | 11.5        | 7,415  | 0.03      | 0.01 | 0.3  | 0.1         |
| Forest residuals | 48.9        | 4,429  | 1.03      | 0.11 | 4.0  | 0.5         |
| Yard waste       | 38.1        | 4,341  | 0.85      | 0.24 | 20.4 | 1.2         |
| RDF              | 4.2         | 6,396  | 0.77      | 0.33 | 25.0 | 0.5         |
| Poultry litter   | 27.4        | 4,637  | 3.71      | 0.45 | 21.6 | 8.6         |



## **Fuel Properties**

|               | Moisture    | HHV    | Ν         | S    | Ash  | Alkali      |
|---------------|-------------|--------|-----------|------|------|-------------|
|               | As-received |        | Dry basis |      |      |             |
|               | %           | Btu/lb | %         |      |      | lb/<br>MBtu |
| Sawdust       | 11.5        | 7,415  | 0.03      | 0.01 | 0.3  | 0.1         |
| Corn bran     | 12.0        | 8,000  | 1.76      | 0.08 | 3.0  | 0.2         |
| CDS (Syrup)   | 70          | 4,000  | 4.20      | 0.65 |      | 0.9         |
| Tire-D Fuel   | 0.6         | 16,250 | 0.24      | 1.23 | 4.8  |             |
| Carpet-D Fuel | 1.5         | 10,077 | 6.10      | 0.10 | 19.1 | 0.2         |



## **Energy Conversion Options**

- Direct combustion
  - Sensible heat (hot flue gas); specialized heat recovery in place of standard package boiler, TO, NG drying
- Directly heated gasification with staged combustion
  - Low-Btu syngas and sensible heat; specialized heat recovery in place of standard pkg. boiler, TO, NG drying
- Indirectly heated gasification (e.g., steam reforming)
  - Medium Btu syngas for use in standard package boiler, TO, and DDGS dryer
- Fast pyrolysis
  - Bio-oil for use in std. pkg. boiler, TO, and DDGS dryer
  - Storable form of energy; enables decoupling of bio-oil production and use

BR Bock Consulting, Inc.





#### Direct Combustion Example for 50 mgy Dry Mill—175,000 lb process steam/hr



#### **Courtesy of Energy Products of Idaho**





#### **Courtesy of TR Miles Technical Consultants**

BR Bock Consulting, Inc.

#### **Indirectly Heated Steam Reforming Gasifier**

# **BCT GASIFIER**



#### **Courtesy of BioConversion Technology**





15 dry ton/day Indirectly Heated, Steam Reforming Gasifier



BR Bock Consulting, Inc.

## Renewable Energy Economics Example

- Direct combustion example: process steam for 50 mgy dry mill
  - "Normal" process steam– Steam for drying DDGS
- Std. package boiler and thermal oxidizer retained as backup
- Steam DDGS dryer instead of natural gas dryer
- Thermal efficiency: 75%
  (feedstock to steam)

- Capital: \$26.8 million
- O&M: \$1.2 million (doesn't include feedstock cost)
- Equity: 40%
- Interest: 7.5%
- Loan: 10 year
  Depreciation: 7 year
- Corporate tax: 35%
- Net feedstock cost: \$-1.00 to \$2.00/MBtu







### Payback for Renewable Energy Investment: Direct Combustion Poultry Litter Example

|                  | Price of natural gas displaced, \$/MBtu |      |      |       |       |  |
|------------------|-----------------------------------------|------|------|-------|-------|--|
| Net<br>feedstock | 7.00                                    | 8.00 | 9.00 | 10.00 | 11.00 |  |
| cost,<br>\$/MBtu | Payback, years                          |      |      |       |       |  |
| -1.00            | 3.0                                     | 2.7  | 2.4  | 2.2   | 2.0   |  |
| 0.00             | 3.4                                     | 3.0  | 2.6  | 2.4   | 2.2   |  |
| 1.00             | 4.0                                     | 3.4  | 3.0  | 2.7   | 2.4   |  |
| 2.00             | 4.8                                     | 4.0  | 3.4  | 3.0   | 2.7   |  |



## Internal Rate of Return (IRR) for Renewable Energy Investment

|                  | Revenue: \$/MBtu NG displaced |      |      |      |      |  |  |
|------------------|-------------------------------|------|------|------|------|--|--|
| Net<br>feedstock | 3.00                          | 4.00 | 5.00 | 6.00 | 7.00 |  |  |
| cost,<br>\$/MBtu | % IRR after 15 years          |      |      |      |      |  |  |
| -1.00            | 13.9                          | 19.0 | 23.8 | 28.4 | 32.8 |  |  |
| 0.00             | 7.8                           | 13.8 | 18.9 | 23.7 | 28.3 |  |  |
| 1.00             | 0.5                           | 7.6  | 13.6 | 18.8 | 23.5 |  |  |
| 2.00             |                               | 0.3  | 7.4  | 13.4 | 18.6 |  |  |



## Conclusions

- Natural gas prices are likely to remain high and volatile in the foreseeable future
- There are increasing environmental pressures for alternative/beneficial uses wastes and byproducts
- Suitable energy conversion technologies are available and additional technologies appear ready for commercialization
- Renewable energy systems have good projected payback and return with low-cost feedstocks
- 2.5X RFS credit likely will provide additional benefits
- Renewable energy systems can play a significant role in helping eastern U.S. corn/ethanol plants compete with Corn Belt plants

## www.brbock.com

# BR Bock Consulting, Inc. Waste, Energy and Nutrient Solutions for a Better Tomorrow