Combustion Technologies: Scale and End Products

By: Bert Bock For: Innovative Environmental Technologies Symposium February 22, 2007

Drivers

- Regional P surpluses—need for practical alternatives to local land application of poultry litter
- High fossil fuel prices
- Increasing pressure to reduce greenhouse gas emissions

Fuel Property Challenges: Operational

	Green Sawdust	Poultry Litter
Moisture, %	52.6	27.4
Ash, %	2.0	15.7
HHV, Btu/lb	4,150	4,637
HHV (dry), Btu/lb	8,760	6,394
K ₂ O in ash, %	5.8	16.3
Na ₂ O in ash, %	1.7	9.2
Ib alkali/MBtu	0.35	9.3
(slagging and fouling)		
Chloride, % (corrosion)		0.7

Fuel Property Challenges: Environmental

	Green Sawdust	Poultry Litter	
	%		
Nitrogen	0.22	2.7	
Sulfur	0.02	0.3	
Chloride		0.7	
Ash	2.0	15.7	

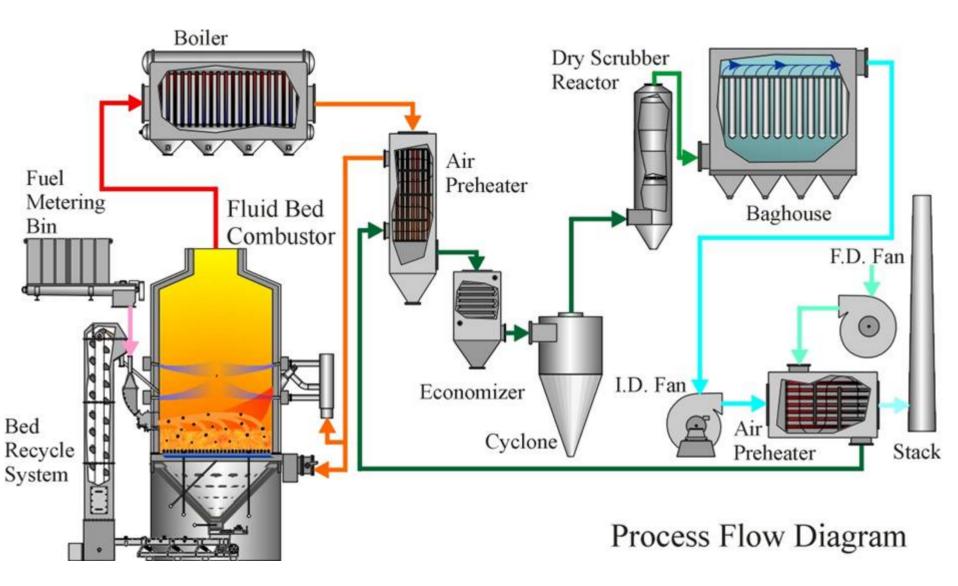
Minimal Products of Incomplete Combustion Also Required

- Carbon monoxide
- Volatile organic compounds
- PCB's, dioxins, furans, etc.

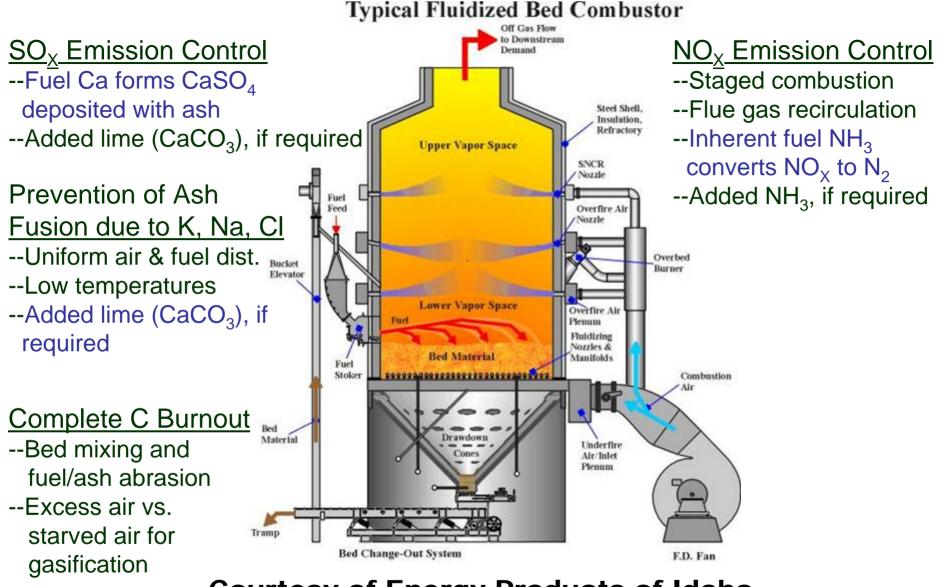
15 Day 24/7 Pilot Scale Test: Summary Energy Products of Idaho (EPI)

- No material handling problems
- Slagging and fouling controlled by maintaining combustion temperatures within narrow limits
- Atmospheric emissions controlled below permitable limits via ameliorating fuel properties and operational procedures
- Summary of results at: <u>http://www.fppcinc.org/pdf/capefear.pdf</u>
- Earlier EPI test results: <u>http://www.brbock.com/FluidBedSolutions.pdf</u>

EPI Pilot Plant



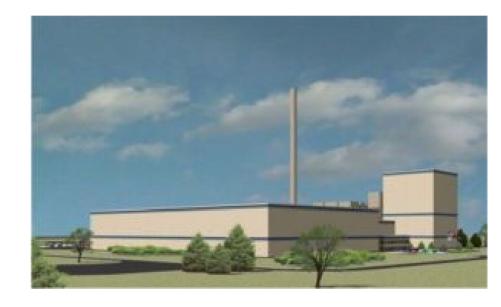
Poultry Litter Feeder



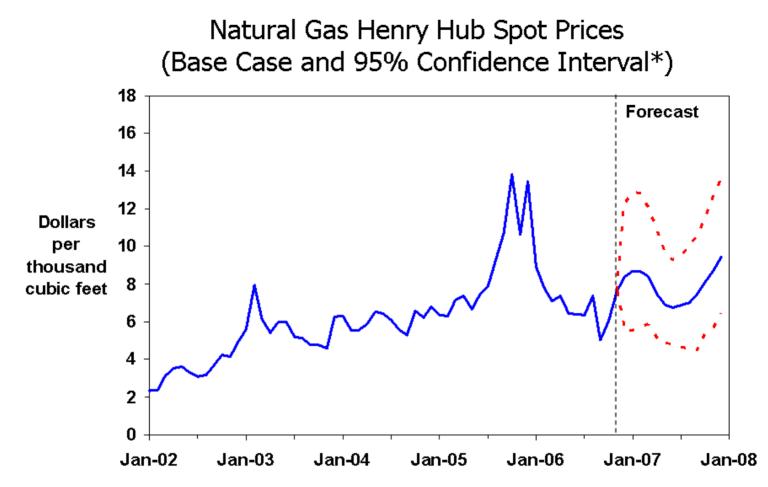
Courtesy of Energy Products of Idaho

Courtesy of Energy Products of Idaho

Industrial Scale


- Advantages
 - Large economies of scale
 - Practical for continuous operator involvement
 - High utilization of equipment
 - Process heat--displacing high-priced natural gas (but need process energy host)
- Disadvantages

Consulting, Inc.


- Significant poultry litter transportation costs
- Intermediate poultry litter storage costs in some cases
- High construction costs if not modular design
- More stringent limits on atmospheric emissions
- Generally low price for electricity sold to grid (utilities)

Fibrominn Poultry Litter Plant

- Based on UK experience (3 similar plants)
- 55 MW
- 500,000 tons poultry litter/year +200,000 tons supplemental wood
- 21 year contract at 8.6¢/kWh
- High contract price from Xcel Energy as part deal allowing burial of nuclear waste in western part of state

*The confidence intervals show +/- 2 standard errors based on the properties of the model.

Short-Term Energy Outlook, December 2006

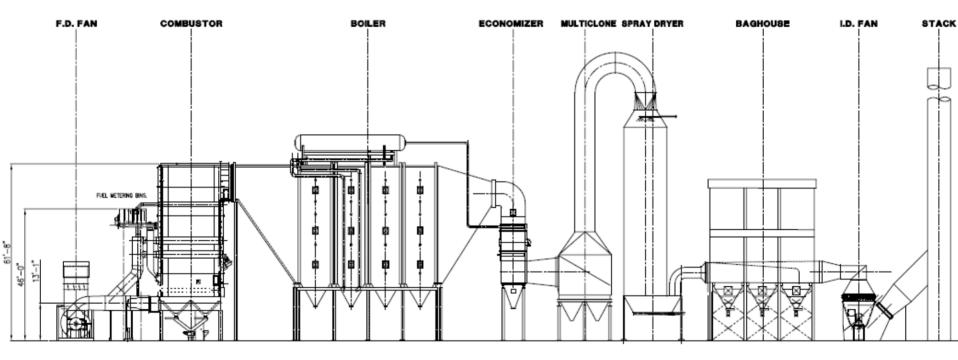
Ele	ectric Power	Process Steam		
	etric Revenue quivalents	Steam Revenue Equivalents		Equivalent Natural Gas Price
\$/MWh	\$/ton Poultry Litter ¹	\$/1,000 lb Steam	\$/ton Poultry Litter ²	\$/MBtu ³
20.00	12.00	4.00	27.00	3.40
<mark>30.00</mark>	<mark>18.00</mark>	5.00	33.75	4.25
40.00	24.00	6.00	40.50	5.10
50.00	30.00	7.00	47.25	5.95
60.00	36.00	8.00	54.00	6.80
70.00	42.00	<mark>9.00</mark>	60.75	<mark>7.65</mark>
<mark>80.00</mark>	<mark>48.00</mark>	10.00	67.50	8.50

Comparison of Electric Power and Steam Revenues in Units of \$/ton Poultry Litter Feedstock

¹Assumes 9 MBtu/ton poultry litter and 15 MBtu poultry litter/MWh

²Assumes 1 lb steam/1,000 Btu, 0.75 Btu steam/Btu poultry litter, and 9 MBtu/ton poultry litter

³Assumes 1 lb steam/1,000 Btu and 0.85 Btu steam/Btu natural gas

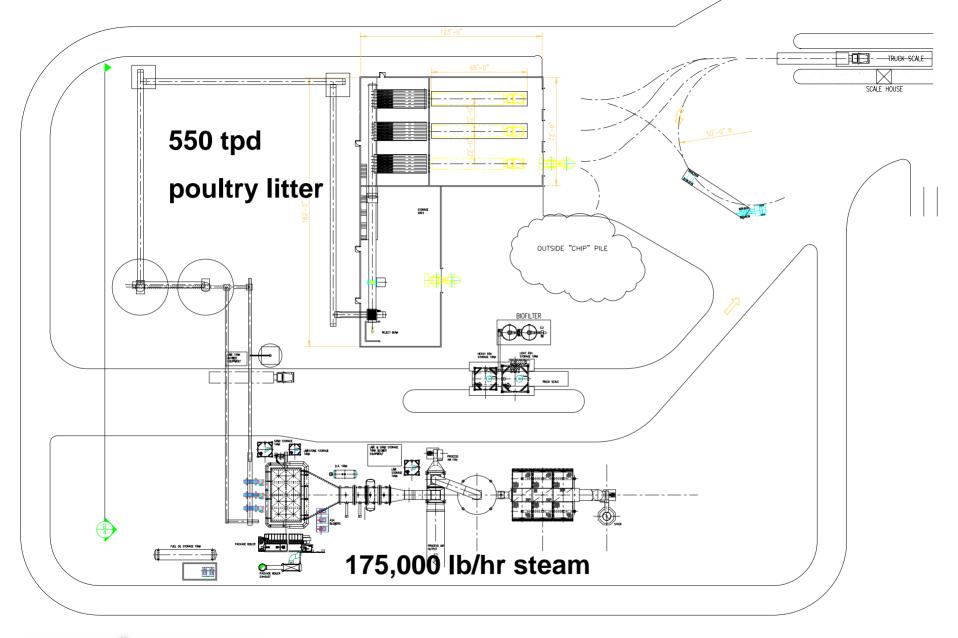

14

Poultry Litter Process Heat for an Ethanol Plant—North Alabama

- Nominal 50 million gallons/year ethanol plant
- Displace natural gas—170,000 lb steam/hour
- 195,000 tons poultry litter/year
- 24/7 operation
- Integration synergies
- Litter in exchange for cleanout and transportation
- Feasibility Study—very favorable economics based on projected avoided natural gas costs: <u>http://www.brbock.com/RefFiles/IPEP_68_3A75_3</u> 144s.pdf

Poultry litter combustor for 50 mgy Dry Mill—175,000 lb process steam/hr

Miles and Bock (2006)



EPI System at Goldfield, IA

Waste, Energy and Nutrient Solutions for a Better Tomorrow

BR Bock Consulting, Inc.

Miles and Bock (2006)

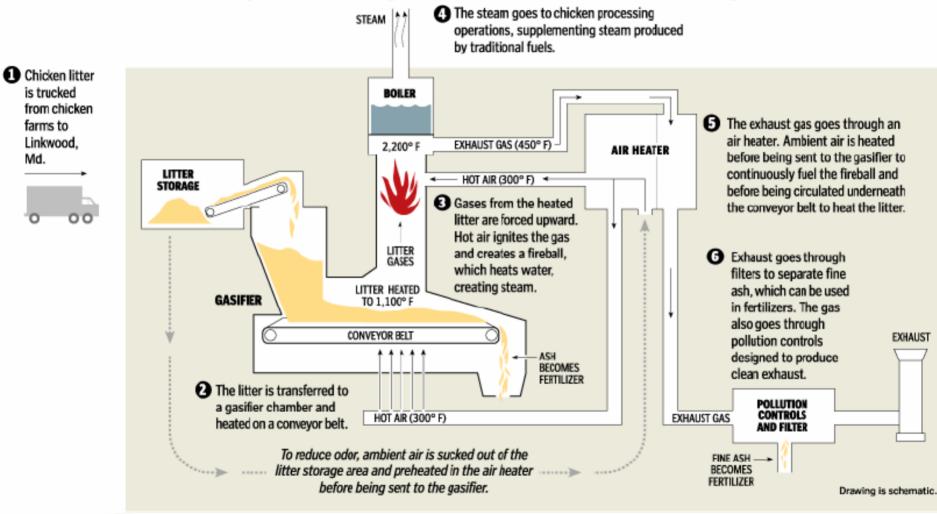
BR Bock Consulting, Inc.

Integration Synergies

Process Heat from Beef Feedlot Manure

- Panda Ethanol at Hereford, TX
- 100 million gallons ethanol/year
- EPI fluidized bed combustion technology
- Design based on pilot tests at EPI facility
- 500,000 tons/year beef feedlot manure
- Fuel property challenges greater than for poultry litter
 - High alkali and chloride
 - Higher ash

Consulting, Inc.


- Lower heating value

REM Engineering/Allen Family Foods/ JCR Enterprises Rendering Plant Project

- Demonstration project
- Supplying 15% of steam requirement for rendering plant
- 10,000 lb steam/hour
- 14,000 tons poultry litter per year
- 24/7 (whole plant 5 1/2 days/week)
- Modular design
- State approval to construct
- Technicality with local permit
- Future projects: (10 to 60 MBtu/hour modules)

REM Engineering System Schematic

Coaltec Modular Approach

Coaltec Modular Approach

Coaltec Test Results with Turkey Litter

- Good operational and emission results
- Feasibility and design study for feed mill: <u>http://www.xcelenergy.com/docs/corpcomm/RDF</u> <u>Cyc2RptCoaltecWMITurkeyRpt3.pdf</u>

25

Poultry Litter Ash

Nutrients of Primary Value

Nutrient	PL Ash	DCP		
Fertilizers				
Total P ₂ O ₅ , %	24.4			
Total K ₂ O, %	16.3			
Mineral Feed Supplements				
Total P, %	10.7	18.5		
Total Ca, %	12.4	24.1		

Ash Value and Cost Factors

Value Factors	Fertilizers	P Feed Supp.
% of P credited		
w/o further processing	50-70	100
w/ further processing	90-100	N/A
% of K credited	95-100	0
Value-add for low F	no	yes
Cost Factors		
Granulation required	yes	no
Transportation	Med to High	Low

Fertilizer Granules Containing PL Ash

Poultry Litter Ash Performed the Same as Dicalcium Phosphate as a P and Ca Supplement for Broilers

Logistics of Year-Round Poultry Litter Supplies

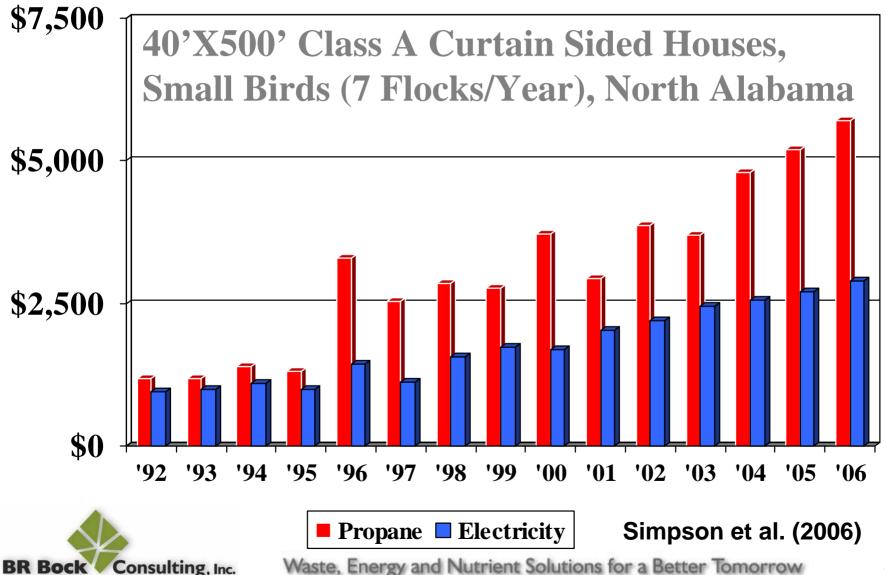
- Biosecurity
- Staggered year-round cleanout

VS.

- Spring and fall cleanout with intermediate storage
- Cake vs. cleanout from whole house
- Cleanout frequency
- Litter amendments
- Type of operation: broiler, pullet, breeder, layer

Poultry Litter Supply Business Models

- Contract vendors
 - Larger trucks
 - Year-round operation, possibly 24/7
 - No land-spreading time
 - Simpler nutrient management compliance: records, etc. vs.
 - Longer haul
- Supply Coop
 - Separate ownership from energy facility
 - Co-owner of energy facility


32

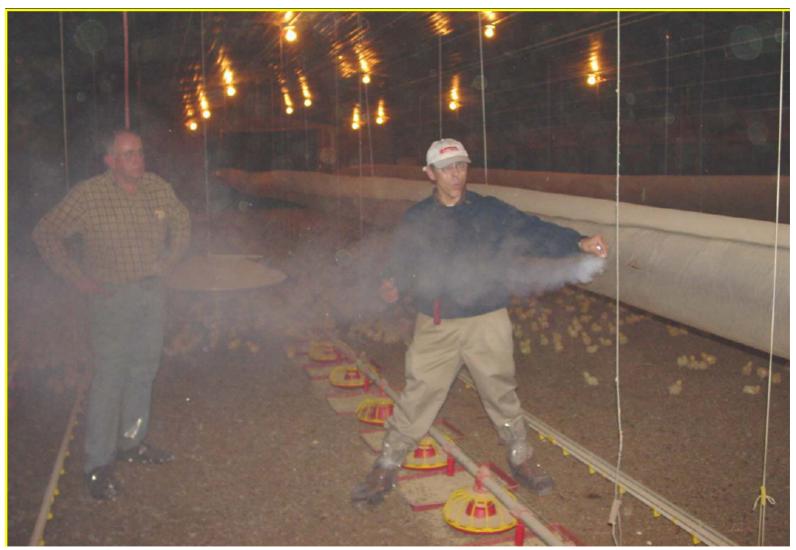
Farm Scale

- Advantages
 - No poultry litter transportation costs
 - Ample litter/house for heating
 - Modular design: shop fabrication vs. on-site construction
 - Displacing propane (higher price) vs. natural gas
 - "Dry heat" for poultry house heating
 - Better heat distribution via distribution tube
- Disadvantages
 - Requires on-farm litter storage
 - Small economies of scale
 - Low utilization of equipment
 - May require more operator involvement than practical

Per House Energy Costs -15 Years

Farm-Scale Module for Josh Frye Demo.

Lynndale Farm-Scale Combustor: U of Arkansas



Loading Automated Lynndale Feeder

Heat Distribution Tube

Conclusions

- Poultry litter has challenging fuel combustion properties that can be managed with careful system design and operating procedures for
 - Efficient and economical operation
 - Low emissions within permitted limits
- Industrial-scale poultry litter combustion projects are being built
- Generally is more economical to provide process heat than electricity

Consulting, Inc.

- Ash value is an important economic component
- Farm-scale systems are under development and hold promise for heating poultry houses

www.brbock.com

BR Bock Consulting, Inc. Waste, Energy and Nutrient Solutions for a Better Tomorrow